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Abstract
We establish a deterministic technique to investigate transport moments of an
arbitrary order. The theory is applied to the analysis of different kinds of
intermittent one-dimensional maps and the Lorentz gas with infinite horizon:
the typical appearance of phase transitions in the spectrum of transport
exponents is explained.

PACS number: 05.45.−a

1. Introduction

It is well known that chaotic dynamical systems may exhibit deterministic diffusion: among
the simplest examples, one may recall chains of 1D maps [1], area preserving maps on the
cylinder [2] and infinite domain billiards, such as the Lorentz gas with finite horizon [3]. In
many cases the mean square displacement (the average being taken with respect to initial
conditions) displays a linear asymptotic growth

〈(xt − x0)
2〉 ∼ Dt (1)

and one may try to devise techniques to compute the diffusion constant D. In particular, periodic
orbits expansions have been employed [4] to evaluate D for one-dimensional maps [5], finite
horizon Lorentz gas [6] and area preserving sawtooth maps [7]. Deterministic transport may
also exhibit an anomalous character, with a mean square displacement deviating from a linear
behaviour. Typically this is associated with a weakening of chaotic properties, such as marginal
fixed points [8], the presence of regular islands in the chaotic sea [9] or opening of the ballistic
channels for Lorentz gas models [10]. Such weakly chaotic regimes are generically quite
hard to study, as they miss the fast memory loss that typically characterizes strongly chaotic
systems. Besides transport properties, this lack of full chaos deeply modifies other dynamical
features: for instance, escape processes may be slowed down and time correlation functions
acquire power law tails (in view of Green–Kubo formula [11] this is closely connected to
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anomalous diffusion). Global properties of the transport process are investigated through the
asymptotic behaviour of generalized moments

〈|xt − x0|q〉 ∼ tν(q). (2)

Gaussian processes yield ν(q) = q/2 for all q; recently deviations from a constant slope
for ν(q) have been referred to as ‘strong’ anomalous diffusion [12] (the reader may consult
this reference for a wide survey of systems falling in this category). In this paper, we will
introduce a cycle expansions technique for computing the spectrum ν(q)(q/2 ∈ N) and apply
the formalism to a number of examples: different chains of one-dimensional intermittent
maps, and infinite domain billiards (Lorentz gas with infinite horizon).

The paper is organized as follows: in section 2, to make the paper self-contained, we
review how periodic orbit expansions may be employed to study transport processes, section 3
briefly explains how full chaos generically results in a Gaussian ν(q), while, finally, section 4
is devoted to the analysis of weakly chaotic systems yielding a non-trivial ν(q) (parts of the
results of this section were anticipated in [13]).

2. Deterministic transport

Chaotic dynamical systems are characterized by sensitive dependence on initial conditions, so
that a meaningful theory must concentrate on statistical properties, rather than on analysis of
single trajectories. A central role in such a context is played by the Perron–Frobenius operator
L which acts as

[Lφ](x) =
∫

X

dy δ(f (y) − x)φ(y) (3)

(we are considering for simplicity dynamical evolution described by a discrete mapping f ).
This operator may be interpreted as the evolution on densities (dual picture with respect to
Koopman dynamics on observables)

ρn+1(x) = L[ρn](x) =
∫

X

dy δ(f (y) − x)ρn(y) (4)

(in particular the invariant density is an eigenvector of L, with corresponding eigenvalue
λ = 1). Note that the kernel is singular, so that investigation of spectral properties generally
requires sophisticated techniques [14]: we also observe that this operator enjoys the semigroup
property:

[Lmφ](x) = [Lm−k[Lkφ]](x). (5)

The study of transport properties is conveniently carried out in terms of the generating function:

Gt(β) = 〈 eβ(xt−x0)〉 (6)

when again the average is over a set of initial conditions. We also define a generalized transfer
operator where the singular delta kernel in (3) is weighted by an appropriate factor (that
maintains the semigroup property):

[Lβφ](x) =
∫

X

dy eβ(f (y)−y)δ(f (y) − x)φ(y). (7)

The key idea is that if we are able to derive an analytic expression for the generating function,
we can then extract all transport moments:

〈(xt − x0)
q〉 =

(
∂q

∂βq
Gt(β)

)∣∣∣∣
β=0

. (8)
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The generating function may be expressed as

Gt(β) =
∫

dx
[
Lt

βρin
]
(x) (9)

where ρin is the density of initial conditions: the asymptotic growth of Gt(β) in this way is
dominated by the leading eigenvalue of the generalized transfer operator, as in equilibrium
statistical mechanics of lattice systems, namely

Gt(β) ∼ λt (β) (10)

and then

〈(xt − x0)
q〉 ∼

(
∂q

∂βq
λt (β)

)∣∣∣∣
β=0

. (11)

The main problem thus consists in computing the leading eigenvalue (and its derivatives):
before turning to this point, we have to describe the particular class of dynamical systems
we want to study; generally we are interested in spatially extended periodic systems where
the dynamics over the unbounded phase space is generated by replicas of a map on a finite
fundamental domain (such as the Lorentz gas on a square lattice, where the dynamics on a
fundamental cell corresponds to the Sinai billiard). From now on we illustrate the case of a
one-dimensional map on the real line, even though the method is by no means limited to this
context. The key property of the dynamical system under investigation is represented by the
symmetry properties

f (−x) = −f (x) (12)

f (x + n) = n + f (x) (13)

for any n ∈ Z. The property (12) guarantees the absence of a net drift while with (13) we
impose that the map on the real line is obtained by lifting a circle map f̂ (θ) defined on the
unit torus as

f̂ (θ) = f (θ)|mod 1 θ ∈ T = [0, 1). (14)

We may thus split the f evolution into a box integer plus a fractional part: xn = Nn + θn,
where

Nn+1 = Nn + σ(θn) (15)

θn+1 = f̂ (θn) (16)

where σ(θ) = [f (θ)] is the function returning the integer part of the argument.
When considering the generating function (6) translation invariance of the system permits

to restrict the average over the elementary cell. The transfer operator on the fundamental cell
is written as

[Lβρ](φ) =
∫
T

dθ eβ(f̂ (θ)−θ+σ(θ))δ(f̂ (θ) − φ)ρ(θ) (17)

where all quantities refer to the torus map once we attach to every point in T the correspondent
jumping number σ(x) = [f (x)] [5, 6].

The leading eigenvalue is the inverse of the smallest z solving the secular equation:

det(1 − zLβ) = Fβ(z) = 0 (18)

(Fβ(z) is usually called the spectral determinant). Using the formal relationship,

det(1 − zLβ) = exp Tr ln(1 − zLβ) = exp

(
−

∞∑
n=1

zn

n
TrLn

β

)
(19)
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we are led to computing the formal trace of Ln
β :

TrLn
β =

∫
dx δ(f̂ n(x) − x) e(f̂ n(x)−x+σn(x)) (20)

=
∑

x=f̂ n(x)

e(βσn(x))

|1 − 
n(x)| (21)

where


n(x) =
n−1∏
i=0

f̂ ′(f̂ i(x)) (22)

σn(x) =
n∑

J=1

σ(f j (x)) (23)

and the sum runs over all periodic orbits of the system under study.
We may now proceed to derive the standard expression for spectral determinants and zeta

functions: the first step consists in using a geometric series expansion for the denominator
in (21):

TrLn
β =

∞∑
k=0

∑
x=f̂ n(x)

e(βσn(x))

|
n(x)|(
n(x))k
. (24)

We remark that the geometric series expansion makes sense only if we deal with a hyperbolic
system, for which |
n(x)| > 1 for any point and iteration order (differently from what happens
for intermittent systems). Next we perform a subtle step: the sum is over periodic points of any
possible order n: so, for instance, fixed points appear at any order, and every p orbit reappears
whenever p divides n. Moreover all points of a given periodic orbit contribute to the trace,
but they all yield the same weight, as instabilities and jumping numbers σn(x) are the same
for every points of the same periodic orbit. So we may convert the sum over periodic points
to a sum over orbits p, each taken once: we further denote by 
p and σp, respectively, the
instabilities and jumping numbers of the orbit p, each computed with respect to its prime
period np. In this way we get

det(1 − zLβ) = exp


−

∑
{p}

∞∑
r=1

∞∑
k=0

zr·np

r

eβσp · r

|
p|r
k·r
p


 (25)

where {p} denotes the set of periodic orbits, each taken once, np being the prime period of the
orbit. The sum over r reproduces each repetition of a single orbit p in the original summation
over periodic points: this sum may be performed exactly, leading to

det(1 − zLβ) = exp


∑

{p}

∞∑
k=0

ln

(
1 − znp eβσp

|
p|
k
p

)
 (26)

=
∞∏

k=0

∏
{p}

(
1 − znp eβσp

|
p|
k
p

)
. (27)

Thus the spectral determinant may be expressed by an infinite product over the so-called
generalized zeta functions:

ζ−1
(k)β(z) =

∏
{p}

(
1 − znp eβσp

|
p|
k
p

)
(28)
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Fβ(z) =
∞∏

k=0

ζ−1
(k)β (29)

and the leading zero can be calculated from the zero-order zeta, the dynamical zeta function
ζ−1
(0)β .

We stress again that the quantities that enter the definition of zeta functions are the prime
period np of the orbit p, its instability 
p = ∏np−1

i=0 f̂ ′(f̂ i(xp) and the integer factor σp, that
accounts for orbit’s behaviour once we unfold it on the real line. As a matter of fact, given
any point xp belonging to p (i.e. f̂ np (xp) = xp) we may have that either it is also a periodic
point of the lift f (f np (xp) = xp), or it might be a running mode, i.e. f np (xp) = xp + σp, with
σp ∈ Z

∗ (see (14)).
It is well known that zeta functions calculation may be recast in terms of perturbative

expansions (the order being determined by the longest prime period available) that yield
exponentially good estimates [4]. In order to show that let us use a simplified example:
suppose there is a complete grammar in the simple alphabet {0, 1}, calling for shortness
tp = znp eβσp

|
p |
k
p

we can expand the infinite product in series:

ζ−1
(k)β(z) =

∏
{p}

(1 − tp)

= (1 − t0) · (1 − t1) · (1 − t01) · (1 − t001) · (1 − t011) · · ·
(30)

= 1 − t0 − t1 − (t01 − t0t1) − (t001 − t0t01) − (t110 − t1t01) − · · · . (31)

We can note that there are fundamental terms t0 and t1 while other curvature terms are made of a
prime cycle shadowed by combinations of shorter cycles. Completely hyperbolic systems with
a finite grammar yield curvature corrections that are exponentially small with the maximum
period, so that (31) (power law expansion of the zeta function) is indeed a perturbative series.

We now sketch the technique we will actually use to investigate arbitrary order transport
moments: first we reorder the zeros z̄i of the spectral determinants so that the dominant ones
come first and write in general:

Fβ( e−s) =
∏

i

(1 − z̄i e−s) (32)

so that
d

ds
ln Fβ( e−s) =

∑
i

z̄i e−s

(1 − z̄i e−s)
(33)

and if we now take the inverse Laplace transform, we get

1

2π i

∫ a+i∞

a−i∞
ds esn d

ds
ln[Fβ(e−s)] =

∑
i

z̄n
i . (34)

As the asymptotic behaviour is dominated by the leading eigenvalue, we may extract it
by using the dynamical zeta function instead of the spectral determinant, thus

z̄n
0(β) ∼ 1

2π i

∫ a+i∞

a−i∞
ds esn d

ds
ln

[
ζ−1
(0)β( e−s)

]
. (35)

Remember that by probability conservation we have z̄0(0) = 1 and all transport properties are
captured by small β expansion (11):

σk(n) = 〈(xn − x0)
k〉0 = ∂k

∂βk
Gn(β)

∣∣∣∣
β=0

∼ ∂k

∂βk

1

2π i

∫ a+i∞

a−i∞
ds esn d

ds
ln

[
ζ−1
(0)β( e−s)

]∣∣∣∣
β=0

.

(36)
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The evaluation of the integral on the right-hand side of (36) requires dealing with high-order
derivatives of a composite function: this is generally accomplished by making use of Faà di
Bruno formula:

dn

dtn
H(L(t)) =

n∑
k=1

∑
k1,...,kn

n!

k1! · · · kn!

dkH

dLk
(L(t)) · Bk(L(t)) (37)

Bk(L(t)) =
(

1

1!

dL

dt

)k1

· · ·
(

1

n!

dnL

dtn

)kn

(38)

k = {k1, . . . kn} with
∑

ki = k
∑

i · ki = n. (39)

Remember that the characterization of anomalous transport is captured by the function
ν(q) (the fundamental quantity we want to evaluate) that expresses the asymptotic growth of
moments of arbitrary order:

〈|xt − x0|q〉 ∼ tν(q). (40)

We already mentioned how ordinary diffusion yields ν(q) = q/2, while anomalous transport
typically shows a non-trivial behaviour, which cannot be encoded by a single exponent, but
rather typically exhibits a phase transition [15, 12, 16]. In next sections we will apply the
formalism to both normal and anomalous examples. These computations accomplish a twofold
goal: besides checking the theory, they will also illustrate how subtle features of the underlying
dynamical system are automatically included in the formalism.

3. Normal transport

We now show how the technique is able to reproduce the well-known exponents q/2 for
the transport moments of a completely chaotic dynamic. This oversimplified example is a
warm-up exercise before facing more involved (and interesting) cases.

Consider the following map on the real line:

f (x) =
{

ax x ∈ [0, 1/2]

a(x − 1) + 1 x ∈ (1/2, 1]
. (41)

For a generic value of the parameter a symbolic dynamics of (41) is quite complicated (and
this leads to interesting consequences, such as fractal dependence of the diffusion constant
on the slope a [17]). In contrast, by choosing an integer slope the torus map consists of
complete branches: for example, for a = 2m,m ∈ N the corresponding torus map consists
of 2m complete branches and the grammar is thus unrestricted in a 2m alphabet. Moreover
the linearity of the map leads to complete cancellations of the curvature terms: whenever the
weights associated with each cycle depend multiplicatively on the symbolic code entries, the
contribution of a cycle and corresponding pseudocycles cancel out exactly and zeta functions
pick up contribution only from fixed points.

In this case there are 2m fixed points: the instabilities are trivially 
i = a for
every fixed point while the jumping numbers associated with each branch are clearly
0, 1, . . . , (a − 1),−(a − 1), . . . ,−1, 0.

The zeta function for the torus map is then

ζ−1
0{β}(z) = 1 − 2z

a

(
1 +

a/2−1∑
k=1

cosh(βk)

)
. (42)
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Long time behaviour of the qth moment is captured by (36). Following [4] we concentrate
first on β derivatives

∂n

∂βn
ln ζ−1

0{β}(z)
∣∣∣∣
β=0

. (43)

Faà di Bruno’s expansion (37) generates
n∑

k=1

∑
k1,···kn

1

ζ−1
0{β}(z)k

· Bk(z)

∣∣∣∣∣
β=0

(44)

and a generic term contributing to the product in Bk(z) is now

∂kj

∂βkj
ζ−1

0{β}(z)|β=0 =
{

2z
a

∑a/2−1
l=1 lkj kj even

0 kj odd
. (45)

Each term in (44) has a different asymptotic behaviour and contribute differently to the transport
moment once we perform the derivative with respect to s and take the inverse Laplace transform
in (36). The long time behaviour of the qth transport moment is captured by choosing the
leading singularity of the β derivatives near z = 1 (s = 0).

The numerator in (44) does not diverge for z → 1, and the divergence comes only from
the denominator

1

ζ−1
0{β}(z)k

∼ (1 − z)−k. (46)

The leading singularity comes from the term with the largest possible choice for k and hence
all kj = 2 (remember that for kj odd the numerator vanish). This leads to the estimate

∂n

∂βn
ln ζ−1

0{β}(z)
∣∣∣∣
β=0

∼ (1 − z)−n/2 (47)

and, performing the inverse Laplace transform, this yields ν(q) = q/2, typical of normally
diffusing systems (where one is then interested in obtaining estimates of the prefactor, namely
the diffusion constant). We turn now on more interesting case of intermittent diffusion where
the presence of marginal points deeply modified the structure of transport exponents.

4. Intermittent systems

In the last few years, it has been realized [18–22] that weakly chaotic systems (in particular
one-dimensional intermittent maps, or infinite horizon Lorentz gas models) lead to more
complicated analytic structure of zeta functions, which typically exhibit branch points. In
view of the inverse Laplace formula (36) the modified analytic structure of the zeta function
may induce anomalous behaviour (nonlinear diffusion [4, 23]).

The qualitative difference between an hyperbolic system and an intermittent one can be
well appreciated in figure 1 where a long segment of an orbit for both cases is plotted against
time.

In the intermittent case, chaotic wandering is interrupted by intervals of regular motion,
generated by points that start their motion near the marginal point and slowly move away
from it: we will see that there is a power law separation for nearby trajectories instead of the
exponential growth we normally expect. In the next subsection we will use the thermodynamic
formalism in order to detect the presence of power law behaviour in instabilities spectrum,
while in the following subsections we explain how it is possible to implement cycle expansion
also in this anomalous case.
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Figure 1. A segment of trajectory (300 iterations) with the same initial condition is showed for
two torus maps: a completely hyperbolic map (left) and one with intermittent fixed points (right).

4.1. Thermodynamic formalism

In order to obtain information about the scaling behaviour of periodic orbits instabilities we
turn our attention to a thermodynamic analysis of this set. Consider all periodic points of n
order are xi(n), i = 1 . . . Nn. Consider now the partition of the unit interval with the intervals:

Ii(n) = (xi(n), xi+1(n)) i = 1 . . . Nn (48)

whose length we denote by li(n) = |Ii(n)|, and construct with them the following partition
function:

Zn(τ) =
Nn−1∑
i=1

(li(n))
−τ (49)

where the parameter τ is the formal analogue of an inverse temperature. By varying τ one
probes for all the relative different scaling of the intervals in the partition function sum [24].
For example, for τ → +∞ the partition function will be dominated by the thinnest intervals
while for τ → −∞ the fattest ones prevail.

Scaling properties may be analysed [25] by writing

li(n) = (Nn)
−µi(n) (50)

where we have introduced the local scaling indices µi(n): it is important to note that they will
be finite if the interval shrink exponentially with n (as typically Nn ∼ an) while will go to
zero as (ln n)/n for a power law behaviour.

The (asymptotic) free energy is then defined as

g(τ) = lim
n→∞

1

ln(Nn)
ln Zn(τ) (51)

= lim
n→∞

1

ln(Nn)
ln

∑
i

N
τµi(n)

n (52)
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Figure 2. Approximated scaling index functions µn(τ) versus τ for the map in (76) with γ = 2.5
and with n = 5, 10, 15, 20.

from which we can extract the average scaling index:

µ(τ) = g′(τ ) = lim
n→∞

∑
i µi(n)N

τµi(n)

n∑
i N

τµi(n)

n

. (53)

Figure 2 shows four approximated scaling index functions µn(τ) calculated for an
intermittent map: this map has two complete branches and thus the number of periodic
points of order n grows as 2n, while the presence of marginal points generates a family of
intervals that shrink polynomially with n (the exact form of this map will be presented as second
example in following subsection (see (76)). We can note that by increasing the hierarchical
order the scaling index converges to finite values for τ > 0 while it slowly goes to zero for
τ < 0, as we expect due to intervals that shrink with power law behaviour.

The thermodynamic analysis may be pushed further by rewriting the partition function as

Zn(τ) =
∫ µmax

µmin

dµN(sn(µ)+µτ)
n (54)

where N
sn(µ)
n is the density of intervals with scaling index µ. As the number of periodic orbits

increases the integral can be approximated by the saddle point method:

Ngn(τ)
n = C(n)

[
−2π ln Nn

S ′′
n(τ )

] 1
2

N(Sn(µ̄)+τ µ̄)
n (55)

where µ̄ is the solution of the extremum condition

dSn(τ )

dµ

∣∣∣∣
µ̄

= −τ (56)

and gn(τ ) is the nth order approximation to the free energy.
The scaling spectrum sn(µ) is a highly irregular function of µ for finite n: in practice one

evaluates gn(τ ) and replaces s(µ) = limn→∞ sn(µ) by its convex envelope S(µ), evaluated in
the thermodynamic limit saddle point evaluation of (54).

For the very same example used in calculating the scaling index of figure 2 we now
compute the convex envelope entropy Sn(µ). While for a complete hyperbolic dynamic we
expect a convergence to a curve with strictly positive support, in our case marginality yields a
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Figure 3. Approximated entropies Sn(µ) versus µ for the map (76) with γ = 2.5 and with n = 5,
10, 15, 20.

tail in the small scaling region of S(µ), which slowly advances towards zero as the hierarchical
order increases, see figure 3: the right branch of entropy is stable and it is representative of
exponential scalings while the leftmost branch slowly moves towards zero, being ruled by
intervals shrinking with power laws.

4.2. Transport

We now apply the technique to two classes of one-dimensional maps, where deviations from
fully chaotic behaviour are provided by marginal fixed points of intermittent type [26]. The
prototype example of this class of systems is provided by the mapping on the unit interval

xn+1 ∼ xn + xγ
n

∣∣
mod 1 (57)

where γ > 1 is called the intermittency exponent.
The presence of the marginal fixed point causes problems in using zeta function techniques

in a straightforward manner: this fixed point has |
| = 1, which leads to divergences
(see (21)). The way out of this problem is to prune the 0̄ fixed point away: from a
symbolic dynamics point of view this leads to an infinite alphabet, since all 0n1 fixed points
lack curvature counterterms: the fundamental cycle part of the zeta function thus becomes
(cf (31))

ζ−1
fund(z) = 1 − t1 − t01 − t021 − · · · − t0n1 − · · · (58)

so even if curvature corrections are neglected we do not have a finite order polynomial:
moreover the inclusion of curvature correction even in simple cases is by no means trivial
[19]. As we will see by considering specific examples, the analytic structure of (58) will be
strongly dependent on the intermittency exponent, through the behaviour of stability of cycles
0n1 coming closer and closer to the marginal fixed point.

4.3. Intermittent diffusion I

We can turn now on a specific example. The symmetry requirements are the same as the
completely chaotic example (see relations (12) and (13)).
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Figure 4. A torus map with intermittent fixed points and the corresponding lift.

The map on the fundamental cell (see figure 4) consists of two intermittent branches and
one central hyperbolic region. If we assign jumping numbers σL = −1 to the left branch,
σC = 0 to the central one and σR = +1 to the right branch we get the lift map of figure 4.
Whenever a particle remain trapped near a marginal point the corresponding unfolded trajectory
on the real line consists of successive jumps on the neighbouring cell.

The presence of complete branches leads to an unrestricted grammar in the symbolic
code {L,C,R}, where the corresponding partition obviously consists of the inverse image of
the unit interval under the corresponding three branches functions fL, fC, fR . However we
have to prune marginal fixed points L̄ and R̄ away, as explained before: the grammar is thus
unrestricted on a countable new alphabet:

{C,LiC,LjR,RkC,RlL} i, j, k, l ∈ N+. (59)

The boundary points of such a partition can be constructed by sequences of iterates of the
inverse map (L or R branches): f −1

L (1), f −2
L (1), . . . , f −1

R (0), f −2
R (0), . . .. The corresponding

zeta function will thus consist of a (non-polynomial) fundamental part (58), together with
curvature corrections: by a straightforward generalization of Gaspard–Wang piecewise linear
approximation [27] of Pomeau–Manneville map, we can obtain an approximate model where
all curvature terms vanish and the zeta function can be explicitly written without losing
important dynamical features [28]. The power law scaling of the stability of cycles coming
closer and closer to the marginal points can be estimated as


i ∼ i−(α+1) (60)

where i indicates the number of iteration the orbits needs to escape from the laminar phase,
and

α = 1/(γ − 1) (61)

γ being the intermittency exponent of the L-R branches (see (57)).
The zeta function is

ζ−1
(0)β(z) = 1 − az − bz

∞∑
k=1

zk

kα+1
cosh(βk) (62)

where a and b are fixed by specifying the central region slope and the normalization condition
ζ−1
(0)0(1) = 0.

When equipped with information about the analytic structure of the zeta function, from
(37) we may single out the leading singularity in the logarithmic derivative of the zeta function,
and then estimate the asymptotic behaviour of (36). In our previous example, the only
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divergence for z → 1 in derivatives expansions (37) comes from the denominator while here
the appearance of the Bose function (see (62))

gµ(z) =
∞∑
l=1

zl

lµ
(63)

indeed may alter the analytic features. We recall how the behaviour as z → 1− depends upon
µ (related to the intermittency exponent)

gµ(z) ∼




(1 − z)µ−1 µ < 1

ln(1 − z) µ = 1

ζ(µ) + Cµ(1 − z)µ−1 + Dµ(1 − z) µ ∈ (1, 2)

ζ(2) + C2(1 − z) ln(1 − z) µ = 2

ζ(µ) + Cµ(1 − z) µ > 2

. (64)

We stress again that these functions appear as a consequence of particular sequences
of orbits coming closer and closer to the marginal fixed points whose stability increases
only polynomially with the period [4, 27], a clear signature of local deviation from typical
hyperbolic behaviour (which is ruled by exponential instability growth).

Now look at a generic term in (44) and denote it by Dk1...kn
. Taking into account that

∂i

∂βi
ζ−1
(0)β(z)

∣∣∣∣
β=0

∼
{

0 i odd

zgα+1−i (z) i even
(65)

we have that

Dk1...kn
∼ 1(

ζ−1
(0)0(z)

)k

∏
j

(gα+1−j (z))
kj = D+

k1...kn

D−
k1...kn

(66)

where the D+ picks up the contributions from the product of Bose functions, and all j must be
even, due to (65). First we consider the case α ∈ (0, 1), which corresponds to intermittency
exponent γ > 2: we have D−

k1...kn
∼ (1 − z)kα , which, together with (64), implies that the

dominant singularity is of the form

Dn ∼ 1

(1 − z)ρ
(67)

where ρ is determined by

ρ = sup
{k1...kn}


kα +

∑
j

(j − α)kj


 = n. (68)

Once plugged into (36) this leads to the estimate

ν(q) = q (69)

which means that the whole set of transport moments is ruled by ballistic behaviour (at least
for even exponents, where the method applies). We now turn to the more subtle case α > 1:
since the dynamical zeta function has a simple zero we get D−

k1...kn
∼ (1 − z)k , while the terms

appearing in D+ modify the singular behaviour near z = 1 only for sufficiently high j

gα+1−j (z) ∼
{

(1 − z)α−j j > α

ζ(α + 1 − j) j < α
. (70)
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If all {j} are less than α then the singularity is determined by D−: keeping in mind that the
highest k value is achieved by choosing j = 2 and k2 = n/2, we get, by proceeding as before

ν(q) = q

2
q < α. (71)

When q exceeds α we have to take into account possible additional singularities in D+, and
thus we get

Dn ∼ 1

(1 − z)ρ
(72)

where ρ is determined by

ρ = sup
{k1...kn}


k +

∑
j>α

(j − α)kj


 =

{
n/2 n < 2(α − 1)

n + 1 − α n > 2(α − 1)
(73)

which, once we take (71) into account, yields

ν(q) =
{

q/2 q < 2(α − 1)

q + 1 − α q > 2(α − 1)
. (74)

The set of exponents thus has a non-trivial structure, characterized by a sort of phase transition
for q = 2(α − 1), a rather universal feature of many systems exhibiting anomalous transport
[12, 16]. We note that the parameter ruling the presence of a phase transition (and the explicit
form of the spectrum) is α, that is the exponent describing the polynomial instability growth
of the family of periodic orbits coming closer and closer to the marginal fixed point, and
thus describing the sticking to the regular part of the phase space: in the present example
α = (γ − 1)−1, and thus the sticking exponent is easily connected to the intermittency index.
We remark that our reference to ‘phase transitions’ is somehow arbitrary, since in effect our
technique applies in the present form only to even moments: however, results as (74) are
consistent with all our numerical checks for the whole real q axis.

4.4. Intermittent diffusion II

We now discuss a further example, which will provide additional evidence of the virtues of
our technique. While the setting is similar to the former case we slightly modify it to conform
to original references. The map we consider belongs to a class of two-dimensional systems
where the diffusive process takes place in a direction while all the dynamics is limited to the
torus on the other dimension:{

xt+1 = f̂ (xt )

yt+1 = yt + xt

(75)

where f̂ (x) is a torus map, again dependent on an intermittency parameter γ , implicitly
defined on T = [−1, 1) in the following way [15]:

x =



1
2γ

(1 + f̂ (x))γ 0 < x < 1/(2γ )

f̂ (x) + 1
2γ

(1 − f̂ (x))γ 1/(2γ ) < x < 1
(76)

for negative values of x the map is defined as f̂ (−x) = −f̂ (x) (see (13)): the map is plotted
in figure 5. Diffusion can be treated by the same techniques of the former subsection if we
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Figure 5. The intermittent map with constant invariant measure.

are able to control the values of the function (equivalent to the jumping numbers of previous
example)

σp =
Tp∑
t=1

xt (77)

takes on the periodic orbits.
The most striking difference with respect to the former example is that, for any values of

γ , the map (76) has a constant invariant measure [15].
This comes from the summation property∑

y=f̂ −1(x)

1

f̂ ′(y)
= 1 (78)

that easily follows once we observe that each point has exactly two counterimages y1(x) and
y2(x): they come from two different pieces in (76) and they have opposite sign; by deriving
the two pieces of (76) we then get the summation rule. This is quite different from the former
case where the torus map has non-trivial ergodic properties: an absolutely continuous invariant
measure only exists for α > 1 (see, for instance, [29] and references therein) while the ergodic
behaviour is much more complex when α < 1. In any case sticking induces peaking of the
measure around marginal fixed points (see [27]). In this sense the behaviour of (76) is similar
to what happens in an area preserving map example [30], where a parabolic fixed point coexist
with a Lebesgue invariant measure.

The difference with the previous example can be heuristically understood if we note that
now the slope of the map in the chaotic region is not bounded from above: the closer we need
to be injected near the marginal points the lesser the probability that this happens. This feature
deeply modifies the instabilities of periodic orbits coming closer and closer to the marginal
fixed points, and we expect that a linearization as before will not be able to reproduce them.

A linearization is still possible but we must put attention on matching the condition (78).
To do that let us start by identifying for each branch a laminar and an injection region (for
example, we call B̄ = [0, 1/(2γ )] and B = [1/(2γ ), 1], respectively, the injection and laminar
regions of the right branch (see figure 6).

The Gaspard–Wang linearization has to be modified in the injection zones Ā and B̄: a
linear approximation for all such intervals will give an uniform probability of being reinjected
in the laminar zone and this does not respect the peculiar ergodic property of this map. The way
out to this problem is to perform a finer partition of that regions taking the inverse image (inside
the injection zones) of each interval partitioning the corresponding laminar zone. For example,
we will call B̄1 the injection interval corresponding to inverse image of the laminar one A1, B̄2
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-1
-1 0 1

0.5

-0.5

A1 A2..
– –

B1 B2 B3.......

B2 B1..– –
A3 A2 A1.......

Figure 6. Linearization of the map (76). Near marginal points, laminar regions, a Gaspard–Wang
type partition is used while a finer one is used in the injection zone.

corresponding to A2 and so on (see figure 6). The linearization is now straightforward for
each of these intervals. Moreover the instabilities of all the periodic orbit are well reproduced
once we note that the slope of the linearized map restricted to such injection intervals can be
safely approximated by (see summation property (78))


−1
B̄i

= 1 − 
−1
Ai

. (79)

We will now show how such a linearization is able to reproduce the behaviour of periodic
orbit instabilities. We have seen that the periodic orbits that are relevant to the construction
of the zeta function are the ones that accumulate near the marginal fixed point and for which
the instability has a power law behaviour. In this new map the instability of such orbits takes
a linear correction factor (with respect to the length) from the injection zone: the intervals in
the laminar regions, constructed in the same spirit of Gaspard–Wang linearization [27], shrink
polynomially with the index k:

lk ∼ C

kα+1
(80)

from which it is simple to derive the periodic orbit instabilities. We rewrite the instabilities of
the relevant orbits for the previous example (I) in comparison with the ones of this map (II):


I
LkR =

[
l0

l1

l1

l2
· · · lk−1

lk

]
(81)

∼ kα+1 (82)


II
AkB =

[
l0

l1

l1

l2
. . .

lk−1

lk

] [
1 − lk

lk−1

]−1 [
1 − l1

l0

]−1

(83)

∼ 
I
LkR

lk−1

lk−1 − lk
∼ k
I

LkR (84)

∼ kα+2 (85)
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Figure 7. The exponent χ(α) of power law decay of instabilities 
II
AkB

∼ kχ(α) as a function of
the parameter α (open circles) and the best fit χ(α) = (0.88α + 1.9) (full line).

where we note that for this second example the modified linearization produces two new
factors (see (83)) that correspond to the slope of the two injection intervals visited by the orbit;
one of them depends explicitly on the length of the orbit and gives a relevant correction to the
instability of the cycle (84).

This trend is what we expect from numerical simulations (see figure 7). Note that this
new linearization is able to capture the behaviour of the instabilities of all orbits, not only the
one accumulating to the marginal point. As a further example we may consider periodic orbits
of the type AkBk where the power law exponent is twice the one before, in agreement with
performed numerical simulations. Thus (78) deeply modifies the relationship between the
intermittency exponent and the instabilities of periodic orbits shadowing the marginal fixed
points.

Once we note that, for the cycles dominating the zeta function expression, the jumping
function (77) can be approximate by the length of the periodic orbit (with the appropriate
sign), the piecewise linear approximation yields the dynamical zeta function

ζ−1
(0)β(z) = 1 − ζ(α + 2)z

∞∑
k=1

zk

kα+2
cosh(βk) (86)

where again α = 1/(γ − 1).
By repeating the steps of the calculation performed in the former case we get that we

always have a phase transition with

ν(q) =
{

q/2 q < 2α

q − α q > 2α
(87)

which may also be checked numerically (see figure 8).

4.5. The Lorentz gas with infinite horizon

The technique does not only apply to one-dimensional systems, but is capable of dealing with
more complicated systems, if we are able to characterize the sequence of orbits that probe
more and more accurately the local behaviour near the ordered region. A remarkable example
in this respect is the Lorentz gas with infinite horizon (see figure 9), where a particle collides
elastically with a regular array of fixed circular scatterers [3], the corresponding torus map
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Figure 8. Spectrum of the transport moments for the map (76) with γ = 1.5: the best fit on
numerical data is ν(q) = 0.50q + 0.04 for the dotted line, and ν(q) = 0.98q − 1.82 for the full
line.

(0,1) (1,1) (2,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

Figure 9. Unbounded horizon Lorentz gas, with discs labelling.

is a square billiard table with a circular scatterer in the centre (the so-called Sinai billiard
[3, 10]). In this example the dynamical feature that lowers the chaoticity of the system is
provided by the possibility of infinite free flights along corridors (for instance, horizontal and
vertical direction in figure 9). Periodic orbits for the torus maps (running modes for the full
system) that mimic the free flight are, for instance, orbits that bounce from the (m, 0) row to the
(n, 1) row travelling a distance of p lattice spacings between each two successive collisions.
In view of our former considerations the estimate we need is how the stability of such orbits
scales in the big p limit. Such a calculation is equivalent to computing the fraction of orbits
that starting from the (0, 0) disc suffer their first collision exactly in the (p, 1) disc: such a
probability decays like 1/p3 (see [20]), and in this sense the Lorentz gas corresponds to the
case α = 2, in (62). This leads to a direct estimate of the spectrum of exponents, according to
(74):

ν(q) =
{

q/2 q < 2

q − 1 q > 2
. (88)

It is interesting to show how the phase transition sits exactly at q = 2, that is the order
corresponding to diffusion. The behaviour described in (88) was obtained recently in [16]
(actually for a wider class of extended billiards), by different methods. We also remark that our
method is also capable of taking track of logarithmic corrections to the asymptotic estimates,
and in the present example we get that the variance (second moment) asymptotically grows as
t · ln t (see [10]). The appearance of a logarithmic correction may be understood if we note
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that, for α = 2, we have that

∂2

∂β2
ζ−1
(0)β(e−s) ∼ ln(1 − e−s)

(1 − e−s)
(89)

(cf (62)): then the leading singularity, dominating the integral (36), is of the form
ln(1 − e−s)/(1 − e−s)2, which, by using for instance Tauberian theorems for Laplace
transforms, leads to the logarithmic correction in time. Note that our results are asymptotic
and they do not depend on the geometric features of the billiard (radius to cell size ratio),
which would of course modify transient behaviour, as well as prefactors (with dramatic effects
once this ratio tends to 0 or 1).

5. Conclusions

In this paper we have proposed a zeta function technique to compute the asymptotic behaviour
of different transport moments: the essential ingredient in the analysis of weakly chaotic
examples, that show deviations from the normal diffusing case, has been shown to be a
proper characterization of the sequence of periodic orbits probing closer and closer dynamical
features of the marginal structures. In particular the behaviour of the moments’ spectrum ν(q)

is governed by the power law relating such orbits’ instability to their period. In many cases
ν(q) is characterized by a phase transition between a normal regime and a ballistic one.
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